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ABSTRACT

Predictive analytics has immense potential in disease-type classifications. The key is to identify the
set of genetic and clinical variables that can serve as predictors for disease classification purposes.
However, the predictive and the prescriptive models both suffer from high dimensionality of these
predictors. Therefore, it becomes important to identify a subset of these genetic and clinical varia-
bles that can be used for disease-type predictions. Earlier studies identified a subset of 978 landmark
genes that can infer the expression values of the remaining gene in the human genome with �81%
accuracy. This study focused on understanding if there is any significant difference in the character-
istics of the landmark and non-landmark genes. Several experiments were performed on diseased
tissues that were classified across race, ethnicity, and disease types, with an objective to identify
the number of differentially expressed genes within the landmark and non-landmark gene sets.
Statistically, there was no conclusive evidence to support the hypothesis that there is a significant
difference in the number of differentially expressed genes across the landmark and non-landmark
gene sets.

Keywords L1000 dataset analysis, landmark genes, non-landmark genes, differentially expressed genes, cancer
tissues, RNA-Seq data.

1. Introduction

Cancer is a disease that is characterized by uncontrolled cell growth. It is a heterogeneous disease that consists of
many different subtypes. Early diagnosis of cancer type has become a priority for many cancer researchers because
it can facilitate the subsequent genetic and clinical management of the patients. Cancer research is mainly focused
on primarily identifying the cancer type and, secondarily, on classifying patients into high- or low-risk groups.
These two tasks involve analyzing large datasets and building predictive and prescriptive models that can decode
the interaction between both the clinical and genetic variables. Therefore, biomedical and bioinformatics research
teams have started to rely heavily on machine learning (ML) and artificial intelligence (AI) techniques. These
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techniques have been proven to model the progression and treatment of cancerous conditions. In addition, these
techniques have the ability to detect key features from complex datasets.

Even though ML methods can help in detecting cancer types and help us understand the progression of the disease,
an appropriate level of validation is still needed for these methods to be used in clinical practice. Studies in the past
(Duncan et al. 2008; Liang et al. 2015; Danaee et al. 2017; Bailey et al. 2018; Huang et al. 2018; Saltz et al. 2018;
Way et al. 2019) applied various ML techniques that focused on the impact of the genetic variables (genes) on the
clinical responses. These techniques also have applications in cancer research. By using ML techniques, scientists
can screen early stages of cancer progression by analyzing the genetic variables to find its nature before the symp-
toms show up. At the same time, with the advent of new technologies in the field of medicine, large amounts of
cancer data have been collected and are available to the biomedical research community. Within the data lie com-
plex patterns that can be mined efficiently by using the current state of the ML techniques. However, an accurate
prediction of a disease outcome is one of the most interesting and challenging tasks for the biomedical research
community. As a result, ML methods have become a popular tool for medical researchers. These techniques can
discover and identify patterns and relationships between them from complex datasets, while they are able to effec-
tively predict future outcomes of a cancer type (Kourou et al. 2015).

Advances in the area of personalized medicine are significantly fueled by advances in ML and AI techniques. Per-
sonalized medicine is important because it has increasingly been applied with success in clinical trials. Early detec-
tion of cancer increases the survival rate. Determining which genes contribute to decreased survival likelihood in
cancer patients can provide clinically relevant biomarkers. This study was an effort in developing data analytics
techniques to assess the RNA-sequencing (RNA-Seq) data from the National Cancer Institute (NCI) database
(Tomczak et al. 2015). Early diagnosis of cancer, including cancer susceptibility, recurrence, and survival predic-
tion, can be efficiently performed by using various ML and AI techniques. The availability of larger datasets that
contain gene expression profiling captured over the period of time can significantly improve our ability for progno-
sis in cancer patients (Clayman et al. 2020a, 2020b).

The gene expression profiling measures which genes are expressing in a cell at any given moment. Gene expression
profiling measures the messenger RNA (mRNA) levels, showing the pattern of genes expressed by a cell at the tran-
scription level (Fielden and Zacharewski 2001). Gene expression profiling is used by a variety of researchers in the
area of biomedical engineering, from molecular biologists to environmental toxicologists. This technology can pro-
vide accurate information on gene expression for the entire human genome. Different techniques are used to deter-
mine gene expressions, including DNA microarrays and sequencing technologies, for example, the RNA-Seq (Hurd
and Nelson 2009).

The genome is a collection of biological information, but it is unable to disclose that information on its own. The
initial product of the genome expression is the transcriptome. RNA-Seq is a state-of-the-art approach that can deter-
mine the quantity and sequences of RNA in a sample by using the next-generation sequencing. It analyzes the tran-
scriptome, which indicates which of the genes in our DNA are turned on and off, and to what extent, and
corresponding gene expression levels. RNA-Seq possesses the capability to measure the expression values of the
genes across the transcriptome. RNA-Seq also promises to discover de novo transcriptome with high specificity in
different species. It is a relatively new method and has already provided unprecedented insights into the transcrip-
tional complexities of a variety of organisms.

RNA-Seq is a relatively modern approach used to generate read counts of complementary DNA in parallel to gener-
ate a comprehensive set of corresponding gene expression levels. Some ML models effectively generalize between
microarray and RNA-Seq data. RNA-Seq and microarray-based predictive models can predict clinical outcomes
with a similar performance. RNA-Seq better represents transcript expression patterns that map onto clinically and
genetically generated cancer subgroups compared with microarray data (Zhang et al. 2015).

L1000 is a high-throughput gene expression assay that measures the mRNA transcript abundance of 978
“landmark” genes from human cells. Landmark gene expression levels measured with the L1000 microarray have
been assessed in The Library of Integrated Cellular Signatures (LINCS), which uses expression of �1,000 landmark
genes to infer �21,000 target genes with �81% accuracy. LINCS measured �1.4 million gene expression profiles
of heterogeneous normal and diseased tissue. Computational analysis of large gene expression indicates that it
would be feasible to derive sufficient information about the transcriptional state of a cell by measuring only a subset
of expressed genes. In addition to that, the genome-wide expression analysis has shown that gene expression is
highly correlated, with a small cluster of genes that exhibit similar expression patterns across cell states. The genes
that are part of the landmark genes have an expression profile that has been determined as being informative to char-
acterize the transcriptome and can be directly measured from the L1000 assay. These genes have a good predictive
power for inferring the expression of other genes that are not directly measured in the assay (Chen et al. 2016; Clay-
man et al. 2020a, 2020b).
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This study used the The Cancer Genome Atlas Program (TCGA)/NCI Genomic Data Commons (GDC) dataset to
select RNA-Seq and clinical outcome data for the present analysis. The TCGA is a comprehensive set of studies
compiled through the National Institutes of Health that includes genetic and clinical data within individual patient
samples. TCGA data have been thoroughly assessed because TCGA data includes a large depth (large sample size)
and breadth (heterogeneity of sample types and clinical data) for various applications, including predictive analytics
and ML (Tomczak et al. 2015). The TCGA data, along with other cancer research data, are currently hosted through
the GDC, a data repository initiated in June 2016 for its applications in precision medicine.

Previous studies (Clayman et al. 2020a; Liang et al. 2015; Quang et al. 2015; Duan et al. 2016; Chen et al. 2018;
Tsagri et al. 2018; Duncan et al. 2008; Danaee et al. 2017; Kursa and Rudnicki 2010; Kogelman and Kadarmideen
2014; Petralia et al. 2016; Chen et al. 2016; Clayman et al. 2020b) used different predictive analytics methods, such
as clustering methods, deep learning, and feature selection, to evaluate the impact of genes on clinical responses.
Many of these studies (Clayman et al. 2020a; Duan et al. 2016; Chen et al. 2018; Tsagri et al. 2018; Duncan et al.
2008; Danaee et al. 2017; Kursa and Rudnicki 2010; Kogelman and Kadarmideen 2014; Petralia et al. 2016; Chen
et al. 2016; Clayman et al. 2020b) have assessed the impact of clinical and genetic variables on clinical results such
as metastases possibility and survival time. Some of the studies (Lin et al. 2018; Way et al. 2019; Bailey et al.
2018; Saltz et al. 2018; Malta et al. 2018) assessed heterogeneous datasets, including data from several cancer
types. Others evaluated homogeneous datasets with data from a single cancer type.

However, studies in the past failed to understand the significance and role of landmark genes in disease-type predic-
tions. The exact nature and characteristics of landmark genes are still unknown. It is unknown as to how different
the landmark genes are when compared with non-landmark genes with respect to predicting disease types. By using
statistical techniques, we explored if there is any significant difference in the characteristics of the landmark and
non-landmark genes. The present study chose genes based on selection criteria, that is, landmark or non-landmark,
and compared the ability of genes and/or gene sets to predict clinical outcomes.

This study sought to understand if there is any significant difference in the characteristics of the landmark and non-
landmark genes. Earlier studies (Duncan et al. 2008; Chen et al. 2016; Danaee et al. 2017; Ramaker et al. 2017;
Bailey et al. 2018; Chen et al. 2018; Huang et al. 2018; Way et al. 2018; Daoud and Mayo 2019; Clayman et al.
2020a) only focused on using the expression values of the landmark genes to determine the expression values of the
non-landmark genes but did not discuss whether the landmark genes are any different from the non-landmark
genes, that is, could we find a different set of non-landmark genes and say that they are similar in characteristics to
the original set of identified landmark genes.

2. Literature Survey

Personalized medicine can be facilitated by analyzing both the genomic and clinical variables. Genes interact with
one another and with the different clinical variables such as survival, cancer stage, gender, and age of diagnosis to
determine the disease type. For example, let us consider cancer types, namely, prostate, breast, ovarian, and pan-
creas cancer. All these cancer types possess several genes in common, including the breast cancer 1, early onset
(BRCA1) and BRCA2. The mutation in BRCA1 and BRCA2 is associated with a Gleason score � 8, T3/T4 tumor
stage, nodal involvement, and metastases at the time of diagnosis in prostate cancer patients (Castro et al. 2013).
With another gene, TP53, the presence or absence of a TP53 mutation has been identified as a predictor of survival
in prostate cancer patients (Ecke et al. 2010). However, the clinical variables of prostate cancer patients such as the
tumor state can be used to predict treatment resistance. Prostate cancer adenocarcinoma metastases possess greater
treatment resistance as opposed to primary tumors and possess more de-differentiation of phenotypes. The prostate
adenocarcinomas have a strong inverse relationship between stemness index and reduced leukocyte fractions, indic-
ative of reduced immune response when tissue is more differentiated as indicated by mRNA expression-based stem-
ness index response (Malta et al. 2018).

Studies in the past associated with the GDC/TCGA database compared distinct cancer subsets (Bailey et al. 2018)
and specifically used deep learning to study immunohistochemical data (Saltz et al. 2018) and mRNA expression-
based stemness index (Malta et al. 2018). One study assessed RNA-Seq data available on TCGA (Lim et al. 2020),
and one studied a cancer pathway, Ras, across various cancer types by incorporating RNA-Seq data (Way et al.
2018). Also, RNA-RNA interactions have been explored for different cancer subtypes by using deep learning tech-
niques (Dutil et al. 2018). However, not much has been reported with regard to the interactions between the RNA
and clinical data for different cancer subtypes. A study on the GDC/TCGA database also compared distinct cancer
subsets (Bailey et al. 2018). Twenty-six distinct computational tools and/or algorithms established driver genes that
influence distinct cancer and/or cell types and anatomic sites within the TCGA dataset. These include algorithms
such as a random forest algorithm used for predicting oncogenes and tumor suppressor genes from somatic
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mutations. The consensus list/union of the gene sets generated through each of these 26 approaches were pooled for
downstream analysis, which included methods that factored in weighting of genes based on performance for distinct
cancer types (Bailey et al. 2018).

Genes play a very significant role in the progression of diseases. Some genes are predictive of cancer severity,
whereas other genes, including TP53, are protective against the development of cancer. Mutations in TP53 results
in alteration in stress and cell-cycle transcriptional regulator genes in few cancer types, and the intensity of the alter-
ation vary across other cancer types. Target genes that are either up- or downregulated in response to a TP53 muta-
tion involve functions such as cell-cycle inhibition, apoptosis, p53 regulation, and DNA damage response. Genes,
for example, TP53, that influence pathways that regulate many other genes are especially important to consider
when assessing clinical outcomes given that their expression can both directly and indirectly modulate cancer and/
or tumor stage progression (Parikh et al. 2014).

The expression level of the genes obtained through RNA-Seq can be used to build predictive models that can pre-
dict the outcomes of diseases. A combination of genetic and clinical characteristics can increase the ability to pre-
dict overall survival of prostate cancer patients. Personalized medicine is important because it has increasingly been
applied with success in clinical trials. In addition, early detection of cancer produces an increase in survival rate and
consideration of clinical variables, along with RNA-Seq data, can be used to increase efforts at early detection of
cancer (Clayman et al. 2020a). One of the studies focused on developing data analytics techniques to analyze the
RNA-Seq and clinical data gathered from the NCI database. By using the data modalities on the genomic and clini-
cal data obtained from the TCGA and by applying integrative clustering, Liang et al. (2015) reported effective dif-
ferentiation of clinical subgroups for ovarian cancer. A study also investigated the relationship between genetic and
clinical variables by accounting for both coding and non-coding genetic variants (Quang et al. 2015).

Computational costs of biological data analysis call for increasingly efficient methods of determining which genetic
and clinical factors are most relevant for understanding the overall genetic and clinical profiles of human patients
(Duan et al. 2016). This challenge is especially difficult given that distinct individuals can possess distinct profiles
of genetic expression, and certain genetic conditions can be more readily captured than others when using a varying
number of genetic features. Dimensionality reduction methods, such as random forest analysis, k-means clustering,
and principal component analysis (PCA), are often used in tandem to capture essential elements of the data that
explain larger datasets when using a subset of relevant features. Dimensionality reduction methods such as PCA are
effective methods of data representation when linear relationships are present. PCA can detect multiple types of
cancer while also selecting relevant features (Chen et al. 2018). A study to predict cancer outcomes (Tsagri et al.
2018) applied feature selection methods, including PCA and Boruta random forest, for dimensionality reduction.
The utility of the k-means clustering for protein expression and cancer outcomes is demonstrated in the study by
Duncan et al. 2008. Selection methods were further refined by applying the random forest decision tree classifier to
determine a smaller subset of important genes to use for downstream analysis in several clustering methods, includ-
ing k-means, partition around medoids, and res-hierarchical clustering. These clustering methods were used to gen-
erate subsets within the dataset in an unsupervised manner.

One study used deep learning to assess the entire search space of gene expression levels from RNA-Seq data
(Danaee et al. 2017). Another study implemented dimensionality reduction and feature selection methods to reduce
computation and model complexity. When dealing with results of gene expression measurements in the context of
cancer, identification of a minimal-optimal set of genes related to cancer is often useful for establishing genetic
markers (Kursa and Rudnicki 2010). In this way, Boruta analysis can be applied specifically to the approach of
identifying the minimal-optimal set of genes as a selection method to restrict analysis to relevant genes. Previous
studies implemented thresholding, weighting (Kogelman and Kadarmideen 2014), and networks analysis (Petralia
et al. 2016) to assess whether biologically relevant interactions can improve model performance.

A set of 978 landmark genes has been established as predictors of the remaining genes in a microarray dataset ana-
lyzed by Chen et al. (2016). When applying 978 landmark genes as inputs, a deep learning method (D-GEX) results
in lower error compared with linear regression in predicting expression of 81.31% of target genes in an independent
RNA-Seq–based GTEx dataset (Chen et al. 2016). As an extension of the analysis performed by Chen et al. (2016),
these 978 landmark genes from the L1000 dataset were selected from the GDC’s RNA-Seq dataset to assess
whether 978 landmark genes improve clustering (Clayman et al. 2020a).

Dimensionality reduction methods such as PCA are used to select relevant features. In addition to that, the unsuper-
vised learning technique, k-means clustering performs well when applied to data with low effective dimensionality.
Our previous study (Clayman et al. 2020b) showed that 978 landmark genes better differentiated k-means clusters
compared with 978 randomly selected non-landmark genes. K-means clusters generated from the landmark genes
show more separation of cluster groups when plotted against the first two principal components, which capture a
greater proportion of variation for the 978 landmark genes (Clayman et al. 2020b). Analysis of these results
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suggests that the 978 landmark genes better represent the overall genetic profile of these heterogeneous samples.
However, clustering results varied when using the 978 landmark genes versus the 978 non-landmark genes as fea-
tures, depending on whether clustering was performed on the heterogeneous versus the homogeneous datasets. For
the heterogeneous dataset, the percentage of variation captured by each of the first two principal components was
greater for the 978 landmark genes (PCA1, 13.1%; PCA2, 9.2%) versus the 978 non-landmark genes (PCA1, 9.4%;
PCA2, 6.2%), with similar results for the homogeneous dataset. Variability, depending on the set of genes selected,
is also depicted based on the distinct appearance of cluster plots, which possess more visual overlap and greater
between-cluster sum of squares for the non-landmark genes compared with the landmark genes for both the homo-
geneous and heterogeneous datasets. K-means clustering results coincide with the clinical variable of the Ann
Arbor cancer stage to a greater extent when using non-landmark genes as features compared with landmark genes
(Clayman et al. 2020b).

The study by Clayman et al. (2020a) depicted the use of 978 landmark genes as a more effective method of identify-
ing distinct clusters of individuals according to visualization of data clusters against the first two principal compo-
nents of the data when assessing large heterogeneous datasets. Clusters in these plots are more distinct compared
with cluster plots generated by using 978 randomly selected non-landmark genes in the dataset, which supports the
use of these landmark genes as a representation of the genetic profile of these samples when assessing heterogene-
ous datasets (Clayman et al. 2020a; Chen et al. 2016). In contrast, non-landmark genes capture more of the variation
in the data for homogeneous and heterogeneous datasets studied here. Despite this, the non-landmark genes allow
for clustering into groups more consistent with clinical variables for the homogeneous dataset compared with the
978 landmark genes. Certain genes or clinical variables can be more predictive of clustering results than others.
When assessing the separation of groups, the role of sets of individual genes and clinical variables can be examined
further. Cluster analysis can be used to inform future studies on the ability of genes to predict clinical variables as
well as the ability of clinical variables to characterize clusters derived from gene expression results, as examined in
this study. This can be especially relevant toward applications for personalized medicine such as treatment respon-
siveness, depending on the combination of genetic and clinical variables (Clayman et al. 2020a). Predictive models
of cancer outcomes can be built by specific protein expression levels with RNA-Seq. The overall survival of pros-
tate cancer patients can be precisely predicted by genetic and clinical characteristics (Clayman et al. 2020a, 2020b).
Personalized medicine has become a new trend because there are many successful cases in clinical trials with per-
sonalized medicine. Moreover, the survival rate can be increased by early detection of cancer with clinical variables
and RNA-Seq data (Clayman et al. 2020a, 2020b).

Other studies evaluated histopathologic imaging data (Ash et al. 2018; Saltz et al. 2018), multi-omics data (Liang
et al. 2015; Chaudhary et al. 2018; Lin et al. 2018; Way et al. 2019), mRNA data (Azarkhalili et al. 2018), microar-
ray data (Daoud and Mayo 2019), or RNA-Seq data (Danaee et al. 2017) from the TCGA commons to predict clini-
cal outcomes by using deep learning methods, including convolutional and variational autoencoders. Studies
implemented other ML techniques (Huang et al. 2018), support vector machines (Bailey et al. 2018), ensemble
methods (Way et al. 2019; Bailey et al. 2018), construction of latent dimensionalities and PCA (Way et al. 2019),
feature selection, and clustering (Liang et al. 2015) to assess the impact of genes on clinical responses. A study by
Duncan et al. (2008) applied k-means clustering to assess protein expression and cancer outcomes. PCA can be
applied in predictive analysis of multiple types of cancer by selecting relevant features and capturing linear relation-
ships in the data to reduce the dimensionality of data (Chen et al. 2018). Some of these studies evaluated homogene-
ous datasets that contain data from a single cancer type, such as prostate cancer (Saltz et al. 2018), breast cancer
(Danaee et al. 2017), liver cancer (Chaudhary et al. 2018), lung adenocarcinoma (Chaudhary et al. 2018), and acute
myeloid leukemia (Lin et al. 2018). Other studies assessed heterogeneous datasets with data from multiple tumor
types (Lin et al. 2018) or multiple cancer types (Ash et al. 2018; Azarkhalili et al. 2018; Bailey et al. 2018; Huang
et al. 2018; Way et al. 2018). A study by Petralia et al. (2016) evaluated gene and protein networks within TCGA
breast cancer data using the random forest classifier. Previous studies of the GDC used feature selection to reduce
the set of genes used for predicting clinical outcomes. Landmark genes have not been extensively used for assessing
the GDC dataset and have not been assessed for further feature selection approaches to further reduce this set of
genes for predictive analysis (Clayman et al. 2020a, 2020b).

3. Methods and Materials

A total of three datasets were used in this study. The clinical and RNA-Seq dataset (dataset 1) was obtained
from the NCI’s GDC repository. This dataset consists of clinical and genetic information for tissues of 55
cancer types. In total, there are 13,122 observations (instances) of 83 clinical variables and >20,000 genetic var-
iables. Two L1000 datasets, namely, the microarray version of the L1000 dataset (dataset 2) and the RNA-Seq
version of the L1000 dataset (dataset 3) were also analyzed in this study. A brief introduction to all three data-
sets is provided here.
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3.1. Datasets

3.1.1. Dataset 1

Of 13,122 diseased tissues of 55 disease types, a random subset of 6,802 diseased tissues across 10 different disease
types were analyzed in this study. A total of �22k genetic variables were considered as predictors for each diseased
tissue. The total numbers of tissue samples across each disease type considered in this study are listed in Table 1.

Due to the high dimensionality of the datasets, the descriptions of the individual predictors are not provided here.

3.1.2. Dataset 2

The L1000 microarray-based dataset in the GCTx format contained expression data of 22,268 (�22k) genes (rows)
across 129,158 tissues (columns). Of the �22k rows, the first 978 rows were the landmark genes and the remaining
21,290 rows were the non-landmark genes whose expression values were predicted by using the landmark genes. A
sample dataset that consisted of �22k genes across 6,802 diseased tissues was obtained by matching the tissue iden-
tifier in both dataset 1 and dataset 2. To eliminate the variability, the sample dataset was quantile normalized into the
numerical range between 4 and 15, that is, the expression values of the genes were in the range between 4 and 15.

3.1.3. Dataset 3

The L1000 RNA-Seq-based dataset contained expression data of 22,268 (�22k) genes (rows) across 129,158 tis-
sues (columns). Of the �22k rows, the first 978 rows were the landmark genes and the remaining 21,290 rows were
the non-landmark genes. A sample dataset that consisted of �22k genes across 6,802 diseased tissues was obtained
by matching the tissue ids in both dataset 1 and dataset 3. To eliminate the variability, the sample dataset was quan-
tile normalized across all samples such that they know all have the same distribution (e.g., same mean 6 standard
deviation [SD]).

3.2. Tools and Techniques

3.2.1. Analysis of variance

It is a statistical tool used to detect differences between experimental group means. Analysis of variance (ANOVA)
is performed in experimental designs with one dependent variable that is a continuous parametric numerical out-
come measure, and multiple experimental groups within one or more independent (categorical) variables. The inde-
pendent variables are called factors, and groups within each factor are referred to as levels. ANOVA, similar to
linear regression and general linear models, quantifies the relationship between the dependent variable and the inde-
pendent variable(s). There are three different general linear models for ANOVA: the fixed effects model, which
makes inferences that are specific and valid only to the populations and treatments of the study; the random effects
model, which makes inferences about levels of the factor that are not used in the study, that is, this model pertains
to random effects within levels, and makes inferences about a population’s random variation; and the mixed effects
model, which contains both the fixed and the random effects (Sawyer 2009).

Table 1: The number of tissue samples per disease types in dataset 1.

Disease (Cancer) Type No. Samples

Breast 1,485
Kidney 1,448
Brain 759
Colon 675
Prostate gland 660
Bladder 488
Skin 474
Stomach 460
Pancreas 188
Testis 165
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Assumptions for ANOVA: a data set should meet the following criteria before performing ANOVA (Sawyer 2009):

Parametric data: A parametric ANOVA requires parametric data (ratio or interval measures). There are nonpara-
metric, one-factor versions of ANOVA for nonparametric ordinal (ranked) data, specifically the Kruskal-Wallis test
for independent groups and the Friedman test for repeated measures analysis.

Normally distributed data within each group: The fundamental assumption of parametric ANOVA is that each
group of data (each level) be normally distributed. The Shapiro-Wilk test is commonly used to test for normality for
group sample sizes (N) < 50 and the D’Agnostino modification is useful for larger samplings (N > 50).

Homogeneity of variance within each group: Because ANOVA compares normal distribution curves of datasets,
these curves need to be similar to each other in shape and width for the comparison to be valid. In other words, the
amount of data dispersion (variance) needs to be similar between groups. Two commonly invoked tests of homoge-
neity of variance are by Levene and by Brown and Forsthye.

Independent observations: A general assumption of parametric analysis is that the value of each observation for
each subject is independent of the value of any other observation. For independent groups designs, this issue is
addressed with random sampling, random assignment to groups, and experimental control of extraneous variables.

Most commercially available statistics programs perform normality and homogeneity of variance tests. Determina-
tion of the parametric nature of the data and soundness of the experimental design is the responsibility of the inves-
tigator, reviewers, and critical readers of the literature (Sawyer 2009).

Robustness of ANOVA to violations of normality and variance assumptions: ANOVA tests can handle moderate
violations of normality and equal variance if there is a large enough sample size and a balanced design. The validity of
ANOVA is said to be “robust” in the face of violations of normality assumptions if there is an adequate sample size.
ANOVA is more sensitive to violations of the homogeneity of variance assumption, but this is mitigated if sample sizes
of factors and levels are equal or nearly so. If normality and homogeneity of variance violations are problematic, then
there are three options: transform the data to best mitigate the violation; use one of the nonparametric ANOVAs, but at
the cost of reduced power and being limited to one-factor analysis; or identify outliers in the dataset by using formal sta-
tistical criteria. In that case, use caution in deleting outliers from the dataset; such decisions need to be justified and
explained. Removal of outliers will reduce deviations from normality and homogeneity of variance (Sawyer 2009).

3.2.2. Kruskal Wallis H test

This test is a nonparametric alternative to the one-way ANOVA. The Kruskal Wallis H test is used when the
assumptions for ANOVA are not met. This test is also referred to as one-way ANOVA on ranks because the ranks
of the data values are used in the test rather than the actual data points. This test determines whether the medians of
two or more groups are different. The hypotheses for the test are the following:

H0: Population medians are equal.

H1: Population medians are not equal.

The Kruskal-Wallis H test is more suitable for analysis of the dataset in which the sample size is small (<30). For
the dataset that is not normally distributed and contains some strong outliers, it is more appropriate to use ranks
rather than actual values to avoid the testing being affected by the presence of outliers or by the non-normal distri-
bution of data. This test also assumes that the observations are independent of each other. The Kruskal Wallis H
test will determine if there is a significant difference between groups. However, this test cannot determine which
groups are different. To determine which groups are significantly different, a post hoc test needs to be performed.

The assumptions for the Kruskal Wallis H test are the following:

• The test is more commonly used when an independent variable has three or more levels.

• The scales for the dependent variable are either ordinal, ratio, or interval.

• All observations should be independent; in other words, there should be no relationship between the mem-
bers in each group or between groups.

• All groups should have the same shape distributions.

3.2.3. Paired Wilcoxon signed-rank test

The nonparametric analog of the t-test is the Wilcoxon signed-rank test and is used when the one-sample t-test assump-
tions are violated. The pairwise Wilcoxon signed-rank test is performed as a post hoc test to determine which groups
are significantly different from other groups. The assumptions of the Wilcoxon signed-rank test are as follows:
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• The differences between the data values are continuous (not discrete).

• The distribution of each difference (of the data values) is symmetric.

• The differences of the data values are mutually independent.

• The differences of the data values all have the same median.

• The measurement scale of the data value is interval.
In summary, parametric tests are more commonly used than are nonparametric tests. However, parametric tests
require an important assumption, which is the assumption of normality. This means that the distribution of sample
means is normally distributed. But, when this assumption is not satisfied, the parametric tests can be misleading. In
such situations, nonparametric tests are the available alternative. The nonparametric tests are statistical methods
based on signs and ranks. When used, nonparametric tests convert the original data into the order size instead of
using the original data value and only uses the rank or signs. Although this can result in the loss of information, but,
when the data are not normal, the nonparametric analysis has more statistical power than the parametric analysis. In
particular, when the means of the sample group are not normally distributed and when the variances are equal
across groups, then nonparametric statistical techniques are excellent alternatives. Another advantage of using the
nonparametric test is that it is not sensitive to outliers (Nahm 2016).

3.2.4. Experimental design strategies

This study focused on developing data analytics techniques to assess the genetic and clinical data gathered from the
GDC. This is a relevant area of research given that these research techniques have applications in analysis of bioin-
formatics datasets in general.

3.2.5. Data collection and integration of genetic and clinical GDC data

Data were downloaded from the GDC by using the GDC Data Portal. RNA-Seq data for each cancer type were
appended into a dataframe, which included a corresponding sample id for later integration of RNA-Seq and clinical
data, which allowed for individual subject-level data analysis. The microarray (LINCS L1000) dataset, which consisted
of the expression values of >20,000 genes across 129k samples was collected from the Gene Expression Omnibus
(GEO) repository. This dataset is curated by the Broad Institute, which is publicly available in the GEO repository.

3.2.6. Data normalization

The DeSeq Bioconductor package in R (Love et al. 2014) was used to normalize the RNA-Seq dataset for all the cancer
types. This normalization method accounts for each gene length as well as the number of observations in the dataset.

3.3. Experiments

3.3.1. Experiment A: Perform ANOVA and the Kruskal Wallis H test to compare the number of
differentially expressed genes within the landmark and non-landmark gene sets across different tissue
samples (6,802 tissue samples)

Initially, ANOVA is performed on all the genes within the landmark gene set and the non-landmark gene sets to
determine if a gene within the set is or is not differentially expressed (Koch et al. 2018). The null and the alternate
hypothesis of the ANOVA is given as follows:

H0 ¼ the gene is not differentially expressed

Ha ¼ the gene is differentially expressed

A significant p-value (p < 0.05, given a ¼ 0:05) that results on an ANOVA test would indicate that the gene is differ-
entially expressed (Koch et al. 2018). For each of the gene sets (landmark and non-landmark), the total numbers of
genes that are differentially expressed is identified by performing ANOVA. Then, when using the Kruskal Wallis H
test, it is determined if the number of genes that is differentially expressed within the different sets are or are not similar.
If the null hypothesis is rejected, then it can be concluded that at least one of the sets has a different number of differen-
tially expressed genes compared with the others. The design strategy for this experiment is summarized in Figure 1.

Note here that, due to the small sample size (n = 15), the nonparametric test was performed because we could not
assume that the distribution of sample means is normal. The nonparametric Kruskal Wallis H test was performed here
because the variables were measured on a continuous scale, the independent variable consists of two or more categori-
cal, independent, or unrelated group, and there is no relationship between the observations in each group (Nahm 2016).
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3.3.2. Experiment B: Perform an ANOVA and a Kruskal Wallis H test to compare the number of
differentially expressed genes within the landmark and non-landmark gene sets across different tissue
samples classified by race, ethnicity, and disease types

To begin with, the diseased tissues were classified (split) by categories either by race or ethnicity, or by disease types.
Within subcategories (e.g., Asian, White, Black) of each category (e.g., race), ANOVA was performed on all the genes
within the landmark gene set and the non-landmark gene sets to determine if a gene within the set was or was not differ-
entially expressed. For each subcategory within a category, ANOVA was performed to identify the number of differen-
tially expressed genes within each of the gene sets (landmark and non-landmark) (Koch et al. 2018). For each
subcategory, within each category, the Kruskal Wallis H test was used to determine if there was a significant difference
in the number of differentially expressed genes. If the null hypothesis is rejected, then it can be concluded that at least
one or more subcategories have a different number of differentially expressed genes. Also, the Kruskal Wallis H test
was performed within each category to determine if the number of genes that were differentially expressed within the
different gene sets across different subcategory were or were not similar. If the null hypothesis is rejected, then it can be
concluded that at least one of the sets within the gene sets (landmark or non-landmark gene sets) has a different number
of differentially expressed genes across different subcategories. Finally, the pairwise Wilcox signed-rank test was used
to identify the subcategory or the gene set that was different from the others in terms of the number of differentially
expressed genes. The pairwise Wilcox signed-rank test is a post hoc test because the Kruskal Wallis H test is an omni-
bus test statistic. It cannot tell which specific groups of the independent variable are statistically significantly from each
other. The design strategy for the experiments conducted in this section is summarized in Figure 2.

3.3.3. Experiment C: Perform correlation studies to determine the pairwise correlation range of the genes
in the landmark and non-landmark gene sets

In this experiment, the expression values of the 978 landmark genes are compared with the expression values of the 15
different randomly selected 978 non-landmark genes set across �129k tissue samples. An ANOVA was performed on
a dataset that consisted of randomly selected 100 correlation values between gene pairs from both the landmark gene
set and the 15 different non-landmark gene set. Here, rejecting the null hypothesis would indicate that there is no signif-
icant difference in the correlation values of the gene pairs across the landmark and non-landmark gene sets. Here, the
parametric test ANOVA is performed on the dataset (16 gene sets), which consisted of the randomly selected 100 corre-
lation values between gene pairs because the sample size (n = 100) was good enough to assume that the sample was
taken from the normally distributed population, that is, each sample was drawn independently of the other samples, the
variance in different groups (gene sets) was the same, and the correlation values in each group was continuous. Visual-
izations, such as boxplots, would highlight the variations in the correlations of the gene pairs across the different set of
genes. The design strategy for the experiment conducted in this section is summarized in Figure 3.

Figure 1: Design strategy for experiment A.
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4. Results and Discussions

This study sought to address if there is any significant difference in the characteristics of the landmark and non-
landmark genes. In an attempt to address the above-mentioned objectives, a total of three experiments were
designed. Here, we present the results obtained from all three experiments and also discuss the inferences gathered
from the results obtained.

To begin with, 16 different sets of 978 genes were obtained from dataset 1. One of the sets included the 978 land-
mark genes and the remaining 15 sets included the randomly chosen 978 genes out of the pool of non-landmark
genes. When randomly choosing the genes for each set, it was ensured that none of the genes were duplicated
within and across the sets (Figure 4). The tissue samples within dataset 1 were further portioned across race, ethnic-
ity, and disease (cancer) types.

Figure 2: Design strategy for experiment B.

Figure 3: Design strategy for experiment C.
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Across the 16 sets of genes, ANOVA was performed to analyze the expression values of the genes across 6,802 dis-
eased tissue samples of 10 cancer types. The objective was to determine how many genes in each of the sets were
differentially expressed (refer to experiment A). Identifying the differentially expressed genes is critical because
they are assumed to be the driving force and/or the molecular biomarkers of different phenotypes (Zhao et al.
2018). Within the landmark and the non-landmark sets of 978 genes, it is important to determine if there is a statisti-
cal difference in the number of differentially expressed genes. If there is a statistical difference in the number of dif-
ferentially expressed genes between one or more sets, then it would indicate that the characteristics of one set is
different from the other. The total number of genes, of the 978 genes, that were differentially expressed across the
landmark set and the 15 different non-landmark sets in three different samples, namely, sample 1, sample 2, and
sample 3, are highlighted in Table 2. The number of differentially expressed genes across each sample for both the
landmark gene set and the non-landmark gene sets were obtained by considering different p-values for the
ANOVA, that is, for sample 1, sample 2, and sample 3, the p-values were <0.05, <0.01, and <0.1, respectively.

In the landmark gene set, 99.9% of the genes were differentially expressed across the 6,802 diseased tissue samples.
ANOVA resulted in a p-value of all the 977 genes to be < 0.1. However, the number of genes that were differen-
tially expressed across the 15 sets of non-landmark genes ranged between 973 and 978 (Table 2). The Kruskal
Wallis H test was performed to determine if there is a significant difference in the number of differentially expressed
genes across the 16 gene sets. Here, three different samples, namely, sample 1 (p < 0.05), sample 2 (p < 0.01), and
sample 3 (p < 0.1), were considered for the analysis (Table 2). Across the 16 different gene sets, no significant dif-
ference in the number of differentially expressed genes was observed at a = 0.05. The Kruskal-Wallis H test
resulted in a p-value of 0.1759. This implies that both the landmark gene set and the 15 different set of randomly
chosen non-landmark gene sets, both have similar numbers of differentially expressed genes.

The total number of differentially expressed genes across the 16 gene sets (the landmark set and 15 non-landmark
sets) at p < 0.05 for the different races, namely, Asian, White, and Black, are recorded in Table 3. Descriptive sta-
tistics across the races indicated that relatively more genes were differentially expressed in the White race (mean 6
SD, 977 6 1.61) than in the Black (mean 6 SD, 715 6 117) and Asian (mean 6 SD, 656 6 71.9) races.

The Kruskal Wallis H test was performed to determine if there was a significant difference in the number of differ-
entially expressed genes across the three races. A significant difference was observed in the number of differentially
expressed genes across the three races at a = 0.05. The Kruskal-Wallis H test resulted in a p-value of 7.767e-08. In
addition to that, a pairwise Wilcox signed-rank test was performed to determine which group of races differed from
each other in terms of the number of differentially expressed genes. At a = 0.05, a significant difference in the
number of differentially expressed genes was observed for the White race, with the p-value of 1.9e-06 against the
Asian and Black race (refer to experiment B).

Figure 4: Sixteen sets of 978 genes used in experiments A–C.

DOI: 10.54116/jbdai.v3i1.49 Date: 2-May-25 Stage: Page: 74 Total Pages: 21

ID: Suresh.R Time: 20:06 I Path: //Chenasprod/Home$/sureshr$/SA-NJBDA-BDAI250004

JBDAI Vol. 3 No. 1, pp. 64-84/ 2025

74



The total number of differentially expressed genes across the 16 gene sets (the landmark set and 15 non-landmark
sets) at p < 0.01 for the different races, namely, Asian, White, and Black, is recorded in Table 4. Descriptive statis-
tics across the races indicates that relatively more genes were differentially expressed in the White race (mean 6
SD, 975 6 2.73) than in the Black (mean 6 SD, 603 6 132) and Asian (mean 6 SD, 515 6 77.1) races.

The Kruskal Wallis H test was performed to determine if there was a significant difference in the number of differ-
entially expressed genes across the three races. A significant difference was observed in the number of differentially
expressed genes across the three races at a = 0.05. The Kruskal-Wallis H test resulted in a p-value of 6.584e-08. In
addition to that, a pairwise Wilcox signed-rank test was performed to determine which group of races differed from

Table 2: The number of genes that were differentially expressed across the landmark and non-landmark gene sets.

Gene Sets Sample 1: p < 0.05 Sample 2: p < 0.01 Sample 3: p < 0.1

L 977 977 977
NL set 1 976 976 976
NL set 2 973 973 973
NL set 3 977 977 977
NL set 4 978 978 978
NL set 5 978 978 978
NL set 6 978 978 978
NL set 7 977 976 978
NL set 8 978 976 978
NL set 9 978 978 978
NL set 10 977 975 977
NL set 11 977 975 977
NL set 12 976 976 976
NL set 13 976 974 976
NL set 14 976 975 976
NL set 15 976 974 977

L, landmark genes; NL, non-landmark genes.

Table 3: The number of genes that were differentially expressed across the landmark and non-landmark
gene sets for different races at p < 0.05.

p < 0.05

Gene Sets Asian White Black

L 738 978 870
NL set 1 778 978 811
NL set 2 784 977 848
NL set 3 711 978 824
NL set 4 670 978 799
NL set 5 643 978 754
NL set 6 592 977 609
NL set 7 553 974 522
NL set 8 590 978 570
NL set 9 702 978 799
NL set 10 591 973 636
NL set 11 630 976 644
NL set 12 699 978 823
NL set 13 624 976 746
NL set 14 606 976 631
NL set 15 588 975 550
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each other in terms of the number of differentially expressed genes. At a = 0.05, a significant difference in the
number of differentially expressed genes was observed for the White race, with the p-value of 2.1e-06 against the
Asian and Black races (refer to experiment B).

The total number of differentially expressed genes across the 16 gene sets (the landmark set and 15 non-landmark
sets) at p < 0.1 for the different races, namely, Asian, White, and Black, are recorded in Table 5. Descriptive

Table 4: The number of genes that were differentially expressed across the landmark and non-landmark
gene sets for different races at p < 0.01.

p < 0.01

Gene Sets Asian White Black

L 589 978 785
NL set 1 648 978 717
NL set 2 665 976 741
NL set 3 574 978 746
NL set 4 510 978 696
NL set 5 472 978 641
NL set 6 450 976 479
NL set 7 413 970 385
NL set 8 456 974 444
NL set 9 575 977 694
NL set 10 460 971 523
NL set 11 502 972 530
NL set 12 556 978 718
NL set 13 487 975 629
NL set 14 447 973 505
NL set 15 436 975 422

Table 5: The number of genes that were differentially expressed across the landmark and non-landmark gene
sets for different races at p < 0.1.

p < 0.1

Gene Sets Asian White Black

L 799 978 912
NL set 1 835 978 850
NL set 2 840 978 881
NL set 3 779 978 863
NL set 4 743 978 838
NL set 5 713 978 801
NL set 6 659 978 663
NL set 7 642 975 581
NL set 8 665 978 631
NL set 9 761 978 840
NL set 10 674 976 693
NL set 11 700 976 709
NL set 12 764 978 863
NL set 13 712 977 797
NL set 14 676 976 697
NL set 15 670 977 620
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statistics across the races indicated that relatively more genes were differentially expressed in the White race (mean
6 SD, 977 6 1.01) than in the Black (mean 6 SD, 765 6 107) and Asian (mean 6 SD, 727 6 63.6) races.

The Kruskal Wallis H test was performed to determine if there was a significant difference in the number of differ-
entially expressed genes across the three races. A significant difference was observed in the number of differentially
expressed genes across the three races at a = 0.05. The Kruskal-Wallis H test resulted in a p-value of 9.975e-08. In
addition to that, a pairwise Wilcox signed-rank test was performed to determine which group of races differed from
each other in terms of the number of differentially expressed genes. At a = 0.05, a significant difference in the
number of differentially expressed genes was observed for the White race, with the p-value of 1.6e-06, against the
Asian and Black races (refer to experiment B).

For the above observations, it is conclusive that the number of differentially expressed genes across the races
was significantly different, at p < 0.01 (see Table 4), p < 0.05 (see Table 3), and at p < 0.1 (see Table 5).
Within the three races, the number of differentially expressed genes was significantly different for White
race when compared with the Asian and Black races, at p < 0.01 (see Table 4), p < 0.05 (see Table 3), and at
p < 0.1 (see Table 5).

Finally, the Kruskal Wallis H test was performed to determine if there was a significant difference in the number of
differentially expressed genes across the 16 gene sets across the three different races. The Kruskal-Wallis H test
resulted in a p-value of 0.7449 for p < 0.01, which indicated that there was no significant difference in the number
of differentially expressed genes across the 16 different gene sets, that is, irrespective of landmark or non-landmark
genes, both types of the genes are similar across the races in terms of the constitution of the number of differentially
expressed genes. Similarly, for the p < 0.05 and p < 0.1, the Kruskal-Wallis H test resulted in a p-value of >0.749,
which indicated that, across the races, there was no significant difference in the number of differentially expressed
genes across the 16 different gene sets (refer to experiment B).

The total number of differentially expressed genes across the 16 gene sets (the landmark set and 15 non-landmark
sets) at p < 0.05 for the two ethnic groups, namely, Hispanic and non-Hispanic, is recorded in Table 6. Descriptive
statistics across the ethnic groups indicate that relatively more genes are differentially expressed in the non-
Hispanic group (mean 6 SD, 977 6 1.31) than in the Hispanic group (mean 6 SD, 506 6 106).

The Kruskal Wallis H test was performed to determine if there was a significant difference in the number of differ-
entially expressed genes across the two ethnic groups. A significant difference was observed in the number of dif-
ferentially expressed genes across the two ethnic groups at a = 0.05. The Kruskal-Wallis H test resulted in a p-value
of 1.207e-06. Thus, at a = 0.05, a significant difference in the number of differentially expressed genes was
observed between the Hispanic and non-Hispanic ethnic groups (refer to experiment B).

Table 6: The number of genes that were differentially expressed across the landmark and non-landmark
gene sets for different ethnic groups at p < 0.05.

p < 0.05

Gene Sets Hispanic Non-Hispanic

L 658 978
NL set 1 620 978
NL set 2 650 976
NL set 3 601 977
NL set 4 555 978
NL set 5 484 978
NL set 6 397 977
NL set 7 331 976
NL set 8 402 977
NL set 9 581 978
NL set 10 414 974
NL set 11 441 975
NL set 12 612 978
NL set 13 516 975
NL set 14 447 978
NL set 15 391 977
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Finally, the Kruskal Wallis H test was performed to determine if there was a significant difference in the number of
differentially expressed genes across the 16 gene sets across the two ethnic groups. The Kruskal-Wallis H test
resulted in a p-value of 0.989 for p < 0.05, which indicated that there was no significant difference in the number
of differentially expressed genes across the 16 different gene sets, that is, irrespective of landmark or non-landmark
genes, both types of the genes are similar across ethnic groups in terms of the constitution of the number of differen-
tially expressed genes (refer to experiment B).

The total numbers of differentially expressed genes across the 16 gene sets (the landmark set and 15 non-landmark
sets) at p < 0.01 for the two ethnic groups, namely, Hispanic and non-Hispanic, are recorded in Table 7. Descriptive
statistics across the ethnic groups indicated that relatively more genes were differentially expressed in the non-
Hispanic group (mean 6 SD, 976 6 2.28) than in the Hispanic group (mean 6 SD, 361 6 97.8).

The Kruskal Wallis H test was performed to determine if there was a significant difference in the number of differ-
entially expressed genes across the two ethnic groups. A significant difference was observed in the number of dif-
ferentially expressed genes across the two ethnic groups at a = 0.05. The Kruskal-Wallis H test resulted in a p-value
of 1.289e-06. Thus, at a = 0.05, a significant difference in the number of differentially expressed genes was
observed between the Hispanic and non-Hispanic ethnic groups (refer to experiment B).

Finally, the Kruskal Wallis H test was performed to determine if there was a significant difference in the number of
differentially expressed genes across the 16 gene sets across the two ethnic groups. The Kruskal-Wallis H test
resulted in a p-value of 0.979 for p < 0.01, which indicated that there was no significant difference in the number
of differentially expressed genes across the 16 different gene sets, that is, irrespective of landmark or non-landmark
genes, both types of the genes are similar across ethnic groups in terms of the constitution of the number of differen-
tially expressed genes (refer to experiment B).

The total number of differentially expressed genes across the 16 gene sets (the landmark set and 15 non-landmark
sets) at p < 0.1 for the two ethnic groups, namely, Hispanic and non-Hispanic, are recorded in Table 8. Descriptive
statistics across the ethnic groups indicated that relatively more genes were differentially expressed in the non-
Hispanic group (mean 6 SD, 977 6 0.931) than in the Hispanic group (mean 6 SD, 590 6 107).

The Kruskal Wallis H test was performed to determine if there was a significant difference in the number of differ-
entially expressed genes across the two ethnic groups. A significant difference was observed in the number of dif-
ferentially expressed genes across the two ethnic groups at a = 0.05. The Kruskal-Wallis nonparametric test
resulted in a p-value of 1.109e-06. Thus, at a = 0.05, a significant difference in the number of differentially
expressed genes was observed between the Hispanic and non-Hispanic ethnic groups (refer to experiment B).

Table 7: The number of genes that were differentially expressed across the landmark and non-landmark
gene sets for different ethnic groups at p < 0.01.

p < 0.01

Gene Sets Hispanic Non-Hispanic

L 503 978
NL set 1 479 978
NL set 2 501 976
NL set 3 434 977
NL set 4 419 978
NL set 5 297 978
NL set 6 268 976
NL set 7 214 974
NL set 8 273 977
NL set 9 432 978
NL set 10 269 971
NL set 11 278 974
NL set 12 454 978
NL set 13 368 973
NL set 14 310 975
NL set 15 275 973
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Finally, the Kruskal Wallis H test was performed to determine if there was a significant difference in the number of
differentially expressed genes across the 16 gene sets across the two ethnic groups. The Kruskal-Wallis H test
resulted in a p-value of 0.992 for p < 0.1, which indicated that there was no significant difference in the number of
differentially expressed genes across the 16 different gene sets, that is, irrespective of landmark or non-landmark
genes, both types of the genes are similar across ethnic groups in terms of the constitution of the number of differen-
tially expressed genes (refer to experiment B).

The total number of differentially expressed genes across the 16 gene sets (the landmark set and 15 non-landmark sets)
at p < 0.05 for the 10 disease (cancer) types, namely, colon, brain, bladder, skin, breast, kidney, prostate, stomach,
testis, and pancreas, are recorded in Table 9. Descriptive statistics across the disease type are recorded in Table 10.

The Kruskal Wallis H test was performed to determine if there was a significant difference in the number of differ-
entially expressed genes across the 10 disease types. A significant difference was observed in the number of differ-
entially expressed genes across the 10 disease types at a = 0.05. The Kruskal-Wallis H test resulted in a p-value of
<2.2e-16. Thus, at a = 0.05, a significant difference in the number of differentially expressed genes was observed
between the 10 different disease types (refer to experiment B).

Finally, the Kruskal Wallis H test was performed to determine if there was a significant difference in the number of
differentially expressed genes across the 16 gene sets across the 10 disease types. The Kruskal-Wallis H test
resulted in a p-value of 0.999 for p < 0.1, which indicated that there was no significant difference in the number of
differentially expressed genes across the 16 different gene sets, that is, irrespective of landmark or non-landmark
genes, both types of the genes were similar across the different disease types in terms of the constitution of the
number of differentially expressed genes (refer to experiment B).

A correlation study was performed to differentiate the characteristics of the landmark and the non-landmark genes
in the L1000 dataset (dataset 3). The pairwise correlation of the expression values of the 978 landmark genes across
�129,000 tissue samples were compared against the expression values of the 978 non-landmark genes across 15
different randomly selected set of non-landmark genes across the �129,000 tissue samples. The results of the corre-
lation study are demonstrated in Figure 5. The blue-colored line represents the range of the correlation values
between a pair of genes in the landmark set. The remaining colored lines represent the range of the correlation
values between the pair of genes in the different non-landmark gene sets. The range of the correlation values of the
gene pairs within the landmark set were between [–0.8, –0.4] and [0.4, 0.8]. However, for the other sets of non-
landmark genes, the range of correlation values between the pair of genes were almost similar, without any distinc-
tive patterns (Figure 5).

Table 8: The number of genes that were differentially expressed across the landmark and non-landmark
gene sets for different ethnic groups at p < 0.1

p < 0.1

Gene Sets Hispanic Non-Hispanic

L 752 978
NL set 1 703 978
NL set 2 720 977
NL set 3 682 977
NL set 4 638 978
NL set 5 582 978
NL set 6 471 978
NL set 7 410 976
NL set 8 477 977
NL set 9 661 978
NL set 10 503 976
NL set 11 530 977
NL set 12 700 978
NL set 13 605 975
NL set 14 533 978
NL set 15 476 977
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One-way ANOVA was performed on a dataset that contained randomly selected 100 correlation values between the
pair of genes from both the landmark gene set and the 15 non-landmark gene sets. At a = 0.05, one-way ANOVA
resulted in a p-value of 0.999, which suggests not to reject the null hypothesis and conclude that there was no signif-
icant difference in the correlation values of the gene pairs across the 16 gene sets, that is, there was no evidence that
the correlation values of the gene pairs in both the landmark set and the non-landmark sets are any different (refer
to experiment C).

The boxplot of the correlation values of the gene pairs across the 16 gene sets are shown in Figure 6. The red-
colored boxplot represents the landmark gene set, and the remaining colored boxplots represent the different non-
landmark gene sets. The boxplots of the different gene set clearly highlights a slight variation in the correlation
values of the gene pairs. However, there are no definitive patterns to clearly differentiate the correlation values of
the gene pairs in both the landmark and non-landmark gene sets.

Based on all the experiments conducted so far, there were no observations that support the fact that landmark and
non-landmark genes are different from each other.

Table 10: Descriptive statistics for different disease types.

Disease Type Mean 6 Standard Deviation

Colon 92.1 6 10.4
Brain 16.6 6 6.69
Bladder 92.3 6 21.3
Skin 12.8 6 6.12
Breast 8.19 6 8.19
Kidney 53.1 6 10.7
Prostate gland 18.4 6 7.78
Stomach 79.9 6 19.4
Testis 15 6 9.26
Pancreas 2.75 6 1.44

Figure 5: Pairwise correlation of genes in the landmark and non-landmark gene sets.
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5. Conclusion and Future Direction

This study aimed at understanding if there is any significant difference in the characteristics of the landmark and the
non-landmark genes. Studies in the past (Duncan et al. 2008; Chen et al. 2016; Danaee et al. 2017; Ramaker et al.
2017; Bailey et al. 2018; Chen et al. 2018; Huang et al. 2018; Way et al. 2018; Daoud and Mayo, 2019; Clayman
et al. 2020a) only focused on using the expression values of the landmark genes to determine the expression values
of the non-landmark genes but did not discuss whether the landmark genes are any different from the non-landmark
genes, that is, could we find a different set of non-landmark genes and say that they are similar in characteristics to
the original set of identified landmark genes. The two experiments, namely the experiment A (see Figure 1) and
experiment B (see Figure 2), indicated that there is no significant difference in the characteristics of the landmark
and non-landmark genes. Across the landmark gene set and the 15 different randomly chosen non-landmark gene
sets of similar size, no significant difference was observed in the number of differentially expressed genes across
race, ethnicity, and disease types. On analyzing the correlation of the gene pairs within the landmark gene set and
the 15 different randomly chosen non-landmark gene sets of similar size, it was observed that landmark gene pairs
had slightly more range of correlation values compared with the other 15 sets of non-landmark gene pairs. How-
ever, the statistical test concluded that there was no evidence that the correlation values of the gene pairs in both the
landmark gene set, and the non-landmark gene sets were any different (refer to experimental design C).

In this study, we only considered 16 sets of 978 genes, that is, one set of landmark genes identified in the work by
Chen et al. (2016) and Clayman et al. (2020a, 2020b), and the 15 sets of randomly chosen genes labeled as non-
landmark genes. The 15 sets, each contained 978 genes, were randomly chosen of the remaining �21,000 genes.
Choosing a set of random 978 genes without repetition (non-landmark) of the remaining �21,000 genes is a com-
plex combinatorial problem, and comparing all of those combinations against the established set of landmark genes
is computationally intensive. Therefore, we chose a sample set of 15 equally sized non-landmark gene sets and used
the non-parametric statistical tests to determine if there was any significant difference in the characteristics of the
landmark and the non-landmark genes.

This study made a significant contribution to the field of personalized medicine. This field strives on the objective
of determining the contributing genetic variables or the genes that are clinically relevant biomarkers for diseases.
Large-scale availability of the gene expression profiling and clinical data related to carcinomas diseases provided us
with the opportunity to explore and identify the significant variables (clinical and genetic) that could clearly charac-
terize one or more diseases. At the same time, the advances in ML and AI techniques have made it possible to
model the clinical and genetic variables to understand the relationships between these variables and the clinical out-
comes. Even though both clinical and genetic variables are important to understand the clinical outcomes, the goal
was to focus on identifying the genetic variables that can serve as clinically relevant biomarkers. This is because the
clinical variables are mainly associated with the manifestations of the disease; that is, they are highly corelated with
the disease types, and, also, it is a measurement that is captured after the fact. However, the genetic characteristics
of an individual organism in a species or population, that is, genetic predisposition has a direct influence on disease
development under the influence of environmental conditions.

Future studies can assess the potentiality of the linear combination or the principal components of the landmark and
non-landmark gene clusters for disease-type predictions. This will be performed by implementing statistical, data
mining, and ML techniques to extract patterns from the data as well as building predictive models. Effects of gene-

Figure 6: A boxplot of the correlation values of the gene pairs across the 16 gene sets.
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gene interactions for various types of cancer diseases should also be further assessed by using survival analysis,
given that gene interactions are predictive of clinical outcomes. Various cancer types should be assessed to deter-
mine genes relevant to specific disease or cancer types.

Future studies may also build on this analysis by using predictive analytics techniques to further develop the under-
standing of how to investigate the relationship between genetic and clinical variables by accounting for both coding
and noncoding genetic variants (Quang et al. 2015). This may be especially relevant toward applications for personal-
ized medicine such as treatment responsiveness, depending on the combination of genetic and clinical variables. Future
studies can assess whether clustering results based on gene expression levels can predict various disease types.
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